Genetics
print


Breadcrumb Navigation


Content

Molecular evolution of plant interactions with the biosphere (Parniske)

Biography

parniske

Professor Parniske studied biology, microbiology, biochemistry and genetics at the universities of Konstanz and Marburg, Germany. From 1986 until 1991 he performed diploma and doctoral studies in the laboratory of Dietrich Werner on chemical communication of the root with the bacterial microbiome with a focus on flavonoids and isoflavonoids. From 1992 until 1994 Parniske carried out biochemical studies on the interaction of plant transcription factors and DNA at the Institute of Biochemistry of the Max Planck Institute for Plant Breeding Research in Cologne, Germany as a postdoctoral fellow funded by the German Research Foundation. From 1994 until 1998 he studied the evolution of plant disease resistance genes in the lab of Jonathan D.G. Jones. In 1998 Professor Parniske was appointed as an independent group leader at the Sainsbury Laboratory in Norwich, UK. In 2004 he accepted a call for the chair of Genetics at the Faculty of Biology of the Ludwig Maximilian University of Munich, Germany. From 2011 until 2013 he acted as the Dean of the Faculty of Biology of the LMU Munich. As the head of the Institute of Genetics at the Faculty of Biology of the LMU Munich, Martin Parniske teaches students at the Bachelor, Master and Doctoral (Dr. rer. nat.) level. Topics taught include Genetics, Molecular Plant-Microbe Interactions, Genetics and Society, Plant Nutrition and Sustainable Food Production.

Scientific contribution 

Genetics of plant root endosymbiosis
Professor Parniske identified a set of plant mutants defective in plant root symbioses with both arbuscular mycorrhiza fungi and nitrogen-fixing rhizobia bacteria [1]. These mutants enforced the idea that plant root endosymbioses with bacteria and fungi share a common genetic basis. Because arbuscular mycorrhiza dates back to the first land plant and the root nodule symbiosis is much younger, this common gene set revealed that the nitrogen-fixing root nodule symbiosis evolved by co-opting genes from the existing arbuscular mycorrhizasymbiosis. By map-based identification of so-called “common symbiosis genes”, the Parniske lab contributed to the identification of several components directly or indirectly involved in a plant signal transduction process required for both symbioses. These include a receptor-like kinase [2], nucleoporins [3,4], potassium channels required for nuclear calcium oscillations [5] and a nuclear localized complex comprising a calcium-and-calmodulin dependent protein kinase [6] and its phosphorylation target CYCLOPS, a DNA-binding transcriptional activator [7,8]. The discovery of these genes and the postulated signal transduction processes had a major impact on this research field. The Parniske lab discovered that CYCLOPS is an interactor and phosphorylation substrate of the calcium- and calmodulin-dependent protein kinase CCaMK. Moreover, the role of CYCLOPS, initially annotated as a protein with unknown function, was identified as a DNA-binding transcriptional activator [8]. Research in the Parniske lab clarified the role of the CCaMK/CYCLOPS complex as a major regulatory hub in symbiotic signal transduction.

Evolution of plant disease resistance genes
Professor Parniske joined the laboratory of the plant geneticist Jonathan D.G. Jones at the Sainsbury Laboratory in Norwich, United Kingdom in November 1994. He addressed the fundamental question in plant disease resistance research, how plants can keep pace with the evolutionary speed of microbial pathogens that have a much shorter generation time than their host plants and thus evade recognition by plant receptors through diversifying selection. Professor Parniske discovered that recombination within and between resistance gene clusters is a key to the evolution of novel recognition specificities of pathogenic microbes by plants [9. 10].

Chemical communication between bacteria and plant roots
During his doctoral work Professor Parniske observed that incompatible genotypes of soybean and rhizobia can lead to the induction of defense responses inside root nodules including the accumulation of phytoalexins, plant toxins produced upon biotic stress [11]. Professor Parniske discovered that the soybean phytoalexin glyceollin is toxic for soybean rhizobia and that low concentrations of isoflavonoids secreted by soybean roots induce a resistance against this antibiotic plant compound [12].

Awards

In 2013 Professor Parniske received the European Research Council Advanced Grant for research on the “Evolution of the molecular mechanisms underlying the nitrogen-fixing root nodule symbiosis” [13]. He received postdoctoral fellowships from the German Research Foundation (DFG), the EMBO and the European Union. In 2014 Professor Parniske received the Thomson Reuters Highly Cited Researcher award in recognition of ranking among the top 1% of researchers for most cited documents in the field of animal and plant sciences [14].

Selected publications

List of publications, Research Gate
List of publications, ORCID
List of publications Thomson Reuters Researcher ID
Martin Parniske publications in Google Scholar

References

1. Wegel E, Schauser L, Sandal N, Stougaard J, and Parniske M. 1998. Mycorrhiza Mutants of Lotus japonicus Define Genetically Independent Steps During Symbiotic Infection. Molecular Plant Microbe Interactions 11: 933–936.
link: http://apsjournals.apsnet.org/doi/abs/10.1094/MPMI.1998.11.9.933
2. Stracke S, Catherine K, Satoko Y, Lonneke M, Shusei S, Takakazu K, Satoshi T, Sandal N, Stougaard J, Szczyglowski K, and Parniske M. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, no. 6892 (June 27, 2002): 959–62. doi:10.1038/nature00841
3. Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie A, Parniske M, Hayashi M, and Kawaguchia M. NUCLEOPORIN85 is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus. Plant Cell Volume: 19 Issue: 2 Pages: 610-624 Published: Feb 2007. doi:10.1105/tpc.106.046938
4. Groth M, Naoya T, Jillian P, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL and Parniske M. NENA, a Lotus japonicus Homolog of Sec13, Is Required for Rhizodermal Infection by Arbuscular Mycorrhiza Fungi and Rhizobia but Dispensable for Cortical Endosymbiotic Development. Plant Cell Volume: 22 Issue: 7 Pages: 2509-2526 Published: Jul 2010. doi:10.1105/tpc.109.069807
5. Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E, and Parniske M. (2008). Lotus japonicus CASTOR and POLLUX Are Ion Channels Essential for Perinuclear Calcium Spiking in Legume Root Endosymbiosis. Plant Cell 20, 3467-3479. doi:10.1105/tpc.108.063255
6. Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, and Stougaard J. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature Volume: 441 Issue: 7097 Pages: 1153-1156 Published: Jun 28 2006. doi:10.1038/nature04862
7. Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Jillian P, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M. “CYCLOPS, a mediator of symbiotic intracellular accommodation.” Proceedings of the National Academy of Sciences 105, no. 51 (December 23, 2008): 20540–45. doi:10.1073/pnas.0806858105
8. Singh, S, Katzer K, Lambert J, Cerri M, and Parniske M. “CYCLOPS, a DNA-Binding Transcriptional Activator, Orchestrates Symbiotic Root Nodule Development.” Cell Host & Microbe 15, no. 2 (February 12, 2014): 139–52.
doi:10.1016/j.chom.2014.01.011
9. Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Wulff BB, and Jones JD. “Novel Disease Resistance Specificities Result from Sequence Exchange between Tandemly Repeated Genes at the Cf-4/9 Locus of Tomato.” Cell 91, no. 6 (December 12, 1997): 821–32.
doi:10.1016/S0092-8674(00)80470-5
10.  Parniske M, Jones JD. Recombination between diverged clusters of the tomato Cf-9 plant disease resistance gene family. Proceedings of the National Academy of Sciences of the United States of America Volume: 96 Issue: 10 Pages: 5850-5855 Published: MAY 11 1999.
doi:10.1073/pnas.96.10.5850
11. Parniske M, Zimmermann C, Cregan PB, and Werner D. Hypersensitive Reaction of Nodule Cells in the Glycine Sp./Bradyrhizobium japonicum‐Symbiosis Occurs at the Genotype‐Specific Level. Botanica Acta 103, no. 2 (May 1, 1990): 143–48.
doi:10.1111/j.1438-8677.1990.tb00140.x
12. Parniske M, Ahlborn B, Werner D. Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. Journal of Bacteriology Volume: 173 Issue: 11. 3432-3439. Jun 1991.
doi:10.1128/jb.173.11.3432-3439.1991
13. "Molecular inventions underlying the evolution of the nitrogen-fixing root nodule symbiosis". European Research Council. Retrieved 2017-02-05.
14. The world's most influential scientific minds 2014, p. 90